Continuous-time Markov chains (CTMCs)¶
Background¶
In this section, we explain how Stormpy can be used to build a simple CTMC. Building CTMCs works similar to building DTMCs as in Discrete-time Markov chains (DTMCs), however instead of transition probabilities we use transition rates.
First, we import Stormpy:
[1]:
import stormpy
Transition Matrix¶
In this example, we build the transition matrix using a numpy array
[2]:
import numpy as np
transitions = np.array(
[
[0, 1.5, 0, 0],
[3, 0, 1.5, 0],
[0, 3, 0, 1.5],
[0, 0, 3, 0],
],
dtype="float64",
)
The following function call returns a sparse matrix with default row groups:
[3]:
transition_matrix = stormpy.build_sparse_matrix(transitions)
print(transition_matrix)
0 1 2 3
---- group 0/3 ----
0 ( 0 1.5 0 0 ) 0
---- group 1/3 ----
1 ( 3 0 1.5 0 ) 1
---- group 2/3 ----
2 ( 0 3 0 1.5 ) 2
---- group 3/3 ----
3 ( 0 0 3 0 ) 3
0 1 2 3
Labeling¶
The state labeling is created analogously to the previous example in building DTMCs:
[4]:
state_labeling = stormpy.storage.StateLabeling(4)
state_labels = {"empty", "init", "deadlock", "full"}
for label in state_labels:
state_labeling.add_label(label)
state_labeling.add_label_to_state("init", 0)
state_labeling.add_label_to_state("empty", 0)
state_labeling.add_label_to_state("full", 3)
Building the Model¶
Now, we can collect all components, including the choice labeling. To let the transition values be interpreted as rates we set rate_transitions to True:
[5]:
components = stormpy.SparseModelComponents(transition_matrix=transition_matrix, state_labeling=state_labeling, rate_transitions=True)
And finally, we can build the model:
[6]:
ctmc = stormpy.storage.SparseCtmc(components)
print(ctmc)
--------------------------------------------------------------
Model type: CTMC (sparse)
States: 4
Transitions: 6
Reward Models: none
State Labels: 4 labels
* init -> 1 item(s)
* empty -> 1 item(s)
* deadlock -> 0 item(s)
* full -> 1 item(s)
Choice Labels: none
--------------------------------------------------------------