20namespace modelchecker {
21template<
typename ModelType>
27template<
typename ModelType>
44 return checkTask.
getFormula().isInFragment(singleObjectiveFragment);
47template<
typename ModelType>
49 return canHandleStatic(checkTask);
52template<
typename ModelType>
56 "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
58 std::unique_ptr<CheckResult> leftResultPointer = this->check(env, pathFormula.
getLeftSubformula());
59 std::unique_ptr<CheckResult> rightResultPointer = this->check(env, pathFormula.
getRightSubformula());
68template<
typename ModelType>
72 "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
74 std::unique_ptr<CheckResult> subResultPointer = this->check(env, eventuallyFormula.
getSubformula());
77 return storm::modelchecker::helper::HybridMarkovAutomatonCslHelper::computeReachabilityRewards<DdType, ValueType>(
78 env, checkTask.
getOptimizationDirection(), this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getMarkovianStates(),
82template<
typename ModelType>
86 "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
89 std::unique_ptr<CheckResult> subResultPointer = this->check(env, eventuallyFormula.
getSubformula());
93 boost::none, boost::none);
94 return storm::modelchecker::helper::HybridMarkovAutomatonCslHelper::computeReachabilityRewards<DdType, ValueType>(
95 env, checkTask.
getOptimizationDirection(), this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getMarkovianStates(),
99template<
typename ModelType>
103 std::unique_ptr<CheckResult> leftResultPointer = this->check(env, pathFormula.
getLeftSubformula());
106 std::unique_ptr<CheckResult> rightResultPointer = this->check(env, pathFormula.
getRightSubformula());
110 "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
112 "Currently step-bounded and reward-bounded properties on MarkovAutomatons are not supported.");
113 double lowerBound = 0;
114 double upperBound = 0;
121 upperBound = storm::utility::infinity<double>();
124 return storm::modelchecker::helper::HybridMarkovAutomatonCslHelper::computeBoundedUntilProbabilities<DdType, ValueType>(
125 env, checkTask.
getOptimizationDirection(), this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getMarkovianStates(),
130template<
typename ModelType>
134 std::unique_ptr<CheckResult> subResultPointer = this->check(env, stateFormula);
137 "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
140 this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getMarkovianStates(), this->getModel().getExitRateVector());
145template<
typename ModelType>
149 "Formula needs to specify whether minimal or maximal values are to be computed on nondeterministic model.");
152 this->getModel(), this->getModel().getTransitionMatrix(), this->getModel().getMarkovianStates(), this->getModel().getExitRateVector());
FragmentSpecification & setNextFormulasAllowed(bool newValue)
FragmentSpecification & setRewardAccumulationAllowed(bool newValue)
FragmentSpecification & setGloballyFormulasAllowed(bool newValue)
FragmentSpecification & setCumulativeRewardFormulasAllowed(bool newValue)
FragmentSpecification & setTotalRewardFormulasAllowed(bool newValue)
FragmentSpecification & setReachabilityRewardFormulasAllowed(bool newValue)
FragmentSpecification & setLongRunAverageRewardFormulasAllowed(bool newValue)
FragmentSpecification & setLongRunAverageProbabilitiesAllowed(bool newValue)
FragmentSpecification & setRewardOperatorsAllowed(bool newValue)
FragmentSpecification & setBoundedUntilFormulasAllowed(bool newValue)
FragmentSpecification & setInstantaneousFormulasAllowed(bool newValue)
FragmentSpecification & setTimeAllowed(bool newValue)
SymbolicQualitativeCheckResult< Type > & asSymbolicQualitativeCheckResult()
bool isOptimizationDirectionSet() const
Retrieves whether an optimization direction was set.
bool isQualitativeSet() const
Retrieves whether the computation only needs to be performed qualitatively, because the values will o...
FormulaType const & getFormula() const
Retrieves the formula from this task.
storm::OptimizationDirection const & getOptimizationDirection() const
Retrieves the optimization direction (if set).
static bool canHandleStatic(CheckTask< storm::logic::Formula, ValueType > const &checkTask)
virtual std::unique_ptr< CheckResult > computeUntilProbabilities(Environment const &env, CheckTask< storm::logic::UntilFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeLongRunAverageProbabilities(Environment const &env, CheckTask< storm::logic::StateFormula, ValueType > const &checkTask) override
virtual bool canHandle(CheckTask< storm::logic::Formula, ValueType > const &checkTask) const override
virtual std::unique_ptr< CheckResult > computeBoundedUntilProbabilities(Environment const &env, CheckTask< storm::logic::BoundedUntilFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeReachabilityTimes(Environment const &env, CheckTask< storm::logic::EventuallyFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeLongRunAverageRewards(Environment const &env, CheckTask< storm::logic::LongRunAverageRewardFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeReachabilityRewards(Environment const &env, CheckTask< storm::logic::EventuallyFormula, ValueType > const &checkTask) override
HybridMarkovAutomatonCslModelChecker(ModelType const &model)
storm::dd::Bdd< Type > const & getTruthValuesVector() const
Helper class for model checking queries that depend on the long run behavior of the (nondeterministic...
std::unique_ptr< HybridQuantitativeCheckResult< DdType, ValueType > > computeLongRunAverageProbabilities(Environment const &env, storm::dd::Bdd< DdType > const &psiStates)
Computes the long run average probabilities, i.e., the fraction of the time we are in a psiState.
std::unique_ptr< HybridQuantitativeCheckResult< DdType, ValueType > > computeLongRunAverageRewards(Environment const &env, storm::models::symbolic::StandardRewardModel< DdType, ValueType > const &rewardModel)
Computes the long run average rewards, i.e., the average reward collected per time unit.
static std::unique_ptr< CheckResult > computeUntilProbabilities(Environment const &env, OptimizationDirection dir, storm::models::symbolic::NondeterministicModel< DdType, ValueType > const &model, storm::dd::Add< DdType, ValueType > const &transitionMatrix, storm::dd::Bdd< DdType > const &phiStates, storm::dd::Bdd< DdType > const &psiStates, bool qualitative)
#define STORM_LOG_THROW(cond, exception, message)
FragmentSpecification csl()
void setInformationFromCheckTaskNondeterministic(HelperType &helper, storm::modelchecker::CheckTask< FormulaType, typename ModelType::ValueType > const &checkTask, ModelType const &model)
Forwards relevant information stored in the given CheckTask to the given helper.
FilteredRewardModel< RewardModelType > createFilteredRewardModel(RewardModelType const &baseRewardModel, storm::logic::RewardAccumulation const &acc, bool isDiscreteTimeModel)