Storm 1.11.1.1
A Modern Probabilistic Model Checker
Loading...
Searching...
No Matches
SparseCtmcCslModelChecker.cpp
Go to the documentation of this file.
2
16#include "storm/utility/graph.h"
18
19namespace storm {
20namespace modelchecker {
21template<typename SparseCtmcModelType>
23 : SparsePropositionalModelChecker<SparseCtmcModelType>(model) {
24 // Intentionally left empty.
25}
26
27template<typename ModelType>
41
42template<typename SparseCtmcModelType>
44 return canHandleStatic(checkTask);
45}
46
47template<typename SparseCtmcModelType>
51 STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Computing bounded until probabilities is not supported for this numeric type.");
52 return nullptr;
53 } else {
54 storm::logic::BoundedUntilFormula const& pathFormula = checkTask.getFormula();
55 std::unique_ptr<CheckResult> leftResultPointer = this->check(env, pathFormula.getLeftSubformula());
56 std::unique_ptr<CheckResult> rightResultPointer = this->check(env, pathFormula.getRightSubformula());
57 ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
58 ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
59
60 STORM_LOG_THROW(pathFormula.getTimeBoundReference().isTimeBound(), storm::exceptions::NotImplementedException,
61 "Currently step-bounded or reward-bounded properties on CTMCs are not supported.");
62 ValueType lowerBound = 0;
63 ValueType upperBound = 0;
64 if (pathFormula.hasLowerBound()) {
65 lowerBound = pathFormula.getLowerBound<ValueType>();
66 }
67 if (pathFormula.hasUpperBound()) {
68 upperBound = pathFormula.getNonStrictUpperBound<ValueType>();
69 } else {
70 upperBound = storm::utility::infinity<ValueType>();
71 }
72
74 env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(),
75 this->getModel().getBackwardTransitions(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(),
76 this->getModel().getExitRateVector(), checkTask.isQualitativeSet(), lowerBound, upperBound);
77 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
78 }
79}
80
81template<typename SparseCtmcModelType>
84 storm::logic::NextFormula const& pathFormula = checkTask.getFormula();
85 std::unique_ptr<CheckResult> subResultPointer = this->check(env, pathFormula.getSubformula());
86 ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
88 env, this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector(), subResult.getTruthValuesVector());
89 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
90}
91
92template<typename SparseCtmcModelType>
95 storm::logic::GloballyFormula const& pathFormula = checkTask.getFormula();
96 std::unique_ptr<CheckResult> subResultPointer = this->check(env, pathFormula.getSubformula());
97 ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
98 auto probabilisticTransitions = this->getModel().computeProbabilityMatrix();
100 env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), probabilisticTransitions, probabilisticTransitions.transpose(),
101 subResult.getTruthValuesVector(), checkTask.isQualitativeSet());
102 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
103}
104
105template<typename SparseCtmcModelType>
108 storm::logic::UntilFormula const& pathFormula = checkTask.getFormula();
109 std::unique_ptr<CheckResult> leftResultPointer = this->check(env, pathFormula.getLeftSubformula());
110 std::unique_ptr<CheckResult> rightResultPointer = this->check(env, pathFormula.getRightSubformula());
111 ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
112 ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
114 env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(),
115 this->getModel().getBackwardTransitions(), this->getModel().getExitRateVector(), leftResult.getTruthValuesVector(), rightResult.getTruthValuesVector(),
116 checkTask.isQualitativeSet());
117 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
118}
119
120template<typename SparseCtmcModelType>
123 storm::logic::HOAPathFormula const& pathFormula = checkTask.getFormula();
124
125 auto probabilisticTransitions = this->getModel().computeProbabilityMatrix();
128
129 auto formulaChecker = [&](storm::logic::Formula const& formula) {
130 return this->check(env, formula)->asExplicitQualitativeCheckResult().getTruthValuesVector();
131 };
132 auto apSets = helper.computeApSets(pathFormula.getAPMapping(), formulaChecker);
133 std::vector<ValueType> numericResult = helper.computeDAProductProbabilities(env, *pathFormula.readAutomaton(), apSets);
134
135 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
136}
137
138template<typename SparseCtmcModelType>
141 storm::logic::PathFormula const& pathFormula = checkTask.getFormula();
142
143 auto probabilisticTransitions = this->getModel().computeProbabilityMatrix();
146
147 auto formulaChecker = [&](storm::logic::Formula const& formula) {
148 return this->check(env, formula)->asExplicitQualitativeCheckResult().getTruthValuesVector();
149 };
150 std::vector<ValueType> numericResult = helper.computeLTLProbabilities(env, pathFormula, formulaChecker);
151
152 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
153}
154
155template<typename SparseCtmcModelType>
159 STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Computing instantaneous rewards is not supported for this numeric type.");
160 return nullptr;
161 } else {
162 storm::logic::InstantaneousRewardFormula const& rewardPathFormula = checkTask.getFormula();
163 STORM_LOG_THROW(!rewardPathFormula.isStepBounded(), storm::exceptions::NotImplementedException,
164 "Currently step-bounded properties on CTMCs are not supported.");
166 env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector(),
167 checkTask.isRewardModelSet() ? this->getModel().getRewardModel(checkTask.getRewardModel()) : this->getModel().getRewardModel(""),
168 rewardPathFormula.getBound<ValueType>());
169 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
170 }
171}
172
173template<typename SparseCtmcModelType>
177 STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Computing cumulative rewards is not supported for this numeric type.");
178 return nullptr;
179 } else {
180 storm::logic::CumulativeRewardFormula const& rewardPathFormula = checkTask.getFormula();
181 STORM_LOG_THROW(rewardPathFormula.getTimeBoundReference().isTimeBound(), storm::exceptions::NotImplementedException,
182 "Currently step-bounded and reward-bounded properties on CTMCs are not supported.");
183 auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask);
185 env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(), this->getModel().getExitRateVector(),
186 rewardModel.get(), rewardPathFormula.getNonStrictBound<ValueType>());
187 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
188 }
189}
190
191template<typename SparseCtmcModelType>
194 storm::logic::EventuallyFormula const& eventuallyFormula = checkTask.getFormula();
195 std::unique_ptr<CheckResult> subResultPointer = this->check(env, eventuallyFormula.getSubformula());
196 ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
197 auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask);
199 env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(),
200 this->getModel().getBackwardTransitions(), this->getModel().getExitRateVector(), rewardModel.get(), subResult.getTruthValuesVector(),
201 checkTask.isQualitativeSet());
202 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
203}
204
205template<typename SparseCtmcModelType>
208 auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask);
210 env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(),
211 this->getModel().getBackwardTransitions(), this->getModel().getExitRateVector(), rewardModel.get(), checkTask.isQualitativeSet());
212 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
213}
214
215template<typename SparseCtmcModelType>
218 storm::logic::StateFormula const& stateFormula = checkTask.getFormula();
219 std::unique_ptr<CheckResult> subResultPointer = this->check(env, stateFormula);
220 ExplicitQualitativeCheckResult const& subResult = subResultPointer->asExplicitQualitativeCheckResult();
221
222 auto probabilisticTransitions = this->getModel().computeProbabilityMatrix();
223 storm::modelchecker::helper::SparseDeterministicInfiniteHorizonHelper<ValueType> helper(probabilisticTransitions, this->getModel().getExitRateVector());
225 auto values = helper.computeLongRunAverageProbabilities(env, subResult.getTruthValuesVector());
226
227 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(values)));
228}
229
230template<typename SparseCtmcModelType>
233 auto rewardModel = storm::utility::createFilteredRewardModel(this->getModel(), checkTask);
234 auto probabilisticTransitions = this->getModel().computeProbabilityMatrix();
235 storm::modelchecker::helper::SparseDeterministicInfiniteHorizonHelper<ValueType> helper(probabilisticTransitions, this->getModel().getExitRateVector());
237 auto values = helper.computeLongRunAverageRewards(env, rewardModel.get());
238 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(values)));
239}
240
241template<typename SparseCtmcModelType>
244 storm::logic::EventuallyFormula const& eventuallyFormula = checkTask.getFormula();
245 std::unique_ptr<CheckResult> subResultPointer = this->check(env, eventuallyFormula.getSubformula());
247
249 env, storm::solver::SolveGoal<ValueType>(this->getModel(), checkTask), this->getModel().getTransitionMatrix(),
250 this->getModel().getBackwardTransitions(), this->getModel().getExitRateVector(), subResult.getTruthValuesVector(), checkTask.isQualitativeSet());
251 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(numericResult)));
252}
253
254template<typename SparseCtmcModelType>
258 STORM_LOG_THROW(false, storm::exceptions::NotSupportedException, "Computing transient probabilities is not supported for this numeric type.");
259 return {};
260 } else {
261 storm::logic::BoundedUntilFormula const& pathFormula = checkTask.getFormula();
262 STORM_LOG_THROW(pathFormula.getTimeBoundReference().isTimeBound(), storm::exceptions::NotImplementedException,
263 "Currently step-bounded or reward-bounded properties on CTMCs are not supported.");
264 STORM_LOG_THROW(pathFormula.hasUpperBound(), storm::exceptions::NotImplementedException, "Computation needs upper limit for time bound.");
265 ValueType upperBound = pathFormula.getNonStrictUpperBound<ValueType>();
266
267 std::unique_ptr<CheckResult> leftResultPointer = this->check(env, pathFormula.getLeftSubformula());
268 std::unique_ptr<CheckResult> rightResultPointer = this->check(env, pathFormula.getRightSubformula());
269 ExplicitQualitativeCheckResult const& leftResult = leftResultPointer->asExplicitQualitativeCheckResult();
270 ExplicitQualitativeCheckResult const& rightResult = rightResultPointer->asExplicitQualitativeCheckResult();
271
273 env, this->getModel().getTransitionMatrix(), this->getModel().getInitialStates(), leftResult.getTruthValuesVector(),
274 rightResult.getTruthValuesVector(), this->getModel().getExitRateVector(), upperBound);
275 return result;
276 }
277}
278
279template<typename SparseCtmcModelType>
281 // Initialize helper
282 auto probabilisticTransitions = this->getModel().computeProbabilityMatrix();
283 storm::modelchecker::helper::SparseDeterministicInfiniteHorizonHelper<ValueType> helper(probabilisticTransitions, this->getModel().getExitRateVector());
284
285 // Compute result
286 std::vector<ValueType> result;
287 auto const& initialStates = this->getModel().getInitialStates();
288 uint64_t numInitStates = initialStates.getNumberOfSetBits();
289 if (numInitStates == 1) {
290 result = helper.computeLongRunAverageStateDistribution(env, *initialStates.begin());
291 } else {
292 STORM_LOG_WARN("Multiple initial states found. A uniform distribution over initial states is assumed.");
293 ValueType initProb = storm::utility::one<ValueType>() / storm::utility::convertNumber<ValueType, uint64_t>(numInitStates);
294 result = helper.computeLongRunAverageStateDistribution(env, [&initialStates, &initProb](uint64_t const& stateIndex) {
295 return initialStates.get(stateIndex) ? initProb : storm::utility::zero<ValueType>();
296 });
297 }
298
299 // Return CheckResult
300 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
301}
302
303template<typename SparseCtmcModelType>
305 // Initialize helper
306 auto probabilisticTransitions = this->getModel().computeProbabilityMatrix();
307 storm::modelchecker::helper::SparseDeterministicVisitingTimesHelper<ValueType> helper(probabilisticTransitions, this->getModel().getExitRateVector());
308
309 // Compute result
310 std::vector<ValueType> result;
311 auto const& initialStates = this->getModel().getInitialStates();
312 uint64_t numInitStates = initialStates.getNumberOfSetBits();
313 STORM_LOG_THROW(numInitStates > 0, storm::exceptions::InvalidOperationException, "No initial states given. Cannot compute expected visiting times.");
314 STORM_LOG_WARN_COND(numInitStates == 1, "Multiple initial states found. A uniform distribution over initial states is assumed.");
315 result = helper.computeExpectedVisitingTimes(env, initialStates);
316
317 // Return CheckResult
318 return std::unique_ptr<CheckResult>(new ExplicitQuantitativeCheckResult<ValueType>(std::move(result)));
319}
320
321// Explicitly instantiate the model checker.
323
326
327} // namespace modelchecker
328} // namespace storm
Formula const & getRightSubformula() const
Formula const & getLeftSubformula() const
TimeBoundReference const & getTimeBoundReference(unsigned i=0) const
ValueType getNonStrictUpperBound(unsigned i=0) const
storm::expressions::Expression const & getLowerBound(unsigned i=0) const
TimeBoundReference const & getTimeBoundReference() const
FragmentSpecification & setRewardAccumulationAllowed(bool newValue)
FragmentSpecification & setTimeOperatorsAllowed(bool newValue)
FragmentSpecification & setCumulativeRewardFormulasAllowed(bool newValue)
FragmentSpecification & setTotalRewardFormulasAllowed(bool newValue)
FragmentSpecification & setLongRunAverageRewardFormulasAllowed(bool newValue)
FragmentSpecification & setLongRunAverageProbabilitiesAllowed(bool newValue)
FragmentSpecification & setBoundedUntilFormulasAllowed(bool newValue)
FragmentSpecification & setInstantaneousFormulasAllowed(bool newValue)
FragmentSpecification & setTimeAllowed(bool newValue)
const ap_to_formula_map & getAPMapping() const
std::shared_ptr< storm::automata::DeterministicAutomaton > readAutomaton() const
storm::expressions::Expression const & getBound() const
Formula const & getSubformula() const
ExplicitQualitativeCheckResult & asExplicitQualitativeCheckResult()
bool isRewardModelSet() const
Retrieves whether a reward model was set.
Definition CheckTask.h:190
bool isQualitativeSet() const
Retrieves whether the computation only needs to be performed qualitatively, because the values will o...
Definition CheckTask.h:257
std::string const & getRewardModel() const
Retrieves the reward model over which to perform the checking (if set).
Definition CheckTask.h:197
FormulaType const & getFormula() const
Retrieves the formula from this task.
Definition CheckTask.h:140
virtual std::unique_ptr< CheckResult > computeCumulativeRewards(Environment const &env, CheckTask< storm::logic::CumulativeRewardFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeLTLProbabilities(Environment const &env, CheckTask< storm::logic::PathFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeReachabilityTimes(Environment const &env, CheckTask< storm::logic::EventuallyFormula, ValueType > const &checkTask) override
std::unique_ptr< CheckResult > computeExpectedVisitingTimes(Environment const &env)
Computes for each state the expected number of times we visit that state.
virtual std::unique_ptr< CheckResult > computeInstantaneousRewards(Environment const &env, CheckTask< storm::logic::InstantaneousRewardFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeLongRunAverageProbabilities(Environment const &env, CheckTask< storm::logic::StateFormula, ValueType > const &checkTask) override
static bool canHandleStatic(CheckTask< storm::logic::Formula, ValueType > const &checkTask)
virtual std::unique_ptr< CheckResult > computeBoundedUntilProbabilities(Environment const &env, CheckTask< storm::logic::BoundedUntilFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeReachabilityRewards(Environment const &env, CheckTask< storm::logic::EventuallyFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeLongRunAverageRewards(Environment const &env, CheckTask< storm::logic::LongRunAverageRewardFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeNextProbabilities(Environment const &env, CheckTask< storm::logic::NextFormula, ValueType > const &checkTask) override
virtual bool canHandle(CheckTask< storm::logic::Formula, ValueType > const &checkTask) const override
SparseCtmcCslModelChecker(SparseCtmcModelType const &model)
std::unique_ptr< CheckResult > computeSteadyStateDistribution(Environment const &env)
Computes the long run average (or: steady state) distribution over all states Assumes a uniform distr...
virtual std::unique_ptr< CheckResult > computeTotalRewards(Environment const &env, CheckTask< storm::logic::TotalRewardFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeGloballyProbabilities(Environment const &env, CheckTask< storm::logic::GloballyFormula, ValueType > const &checkTask) override
std::vector< ValueType > computeAllTransientProbabilities(Environment const &env, CheckTask< storm::logic::BoundedUntilFormula, ValueType > const &checkTask)
Compute transient probabilities for all states.
virtual std::unique_ptr< CheckResult > computeUntilProbabilities(Environment const &env, CheckTask< storm::logic::UntilFormula, ValueType > const &checkTask) override
virtual std::unique_ptr< CheckResult > computeHOAPathProbabilities(Environment const &env, CheckTask< storm::logic::HOAPathFormula, ValueType > const &checkTask) override
static std::vector< ValueType > computeReachabilityRewards(Environment const &env, storm::solver::SolveGoal< ValueType > &&goal, storm::storage::SparseMatrix< ValueType > const &rateMatrix, storm::storage::SparseMatrix< ValueType > const &backwardTransitions, std::vector< ValueType > const &exitRateVector, RewardModelType const &rewardModel, storm::storage::BitVector const &targetStates, bool qualitative)
static std::vector< ValueType > computeUntilProbabilities(Environment const &env, storm::solver::SolveGoal< ValueType > &&goal, storm::storage::SparseMatrix< ValueType > const &rateMatrix, storm::storage::SparseMatrix< ValueType > const &backwardTransitions, std::vector< ValueType > const &exitRateVector, storm::storage::BitVector const &phiStates, storm::storage::BitVector const &psiStates, bool qualitative)
static ::SupportsExponential std::vector< ValueType > computeBoundedUntilProbabilities(Environment const &env, storm::solver::SolveGoal< ValueType > &&goal, storm::storage::SparseMatrix< ValueType > const &rateMatrix, storm::storage::SparseMatrix< ValueType > const &backwardTransitions, storm::storage::BitVector const &phiStates, storm::storage::BitVector const &psiStates, std::vector< ValueType > const &exitRates, bool qualitative, ValueType lowerBound, ValueType upperBound)
static std::vector< ValueType > computeReachabilityTimes(Environment const &env, storm::solver::SolveGoal< ValueType > &&goal, storm::storage::SparseMatrix< ValueType > const &rateMatrix, storm::storage::SparseMatrix< ValueType > const &backwardTransitions, std::vector< ValueType > const &exitRateVector, storm::storage::BitVector const &targetStates, bool qualitative)
static ::SupportsExponential std::vector< ValueType > computeInstantaneousRewards(Environment const &env, storm::solver::SolveGoal< ValueType > &&goal, storm::storage::SparseMatrix< ValueType > const &rateMatrix, std::vector< ValueType > const &exitRateVector, RewardModelType const &rewardModel, ValueType timeBound)
static ::SupportsExponential std::vector< ValueType > computeAllTransientProbabilities(Environment const &env, storm::storage::SparseMatrix< ValueType > const &rateMatrix, storm::storage::BitVector const &initialStates, storm::storage::BitVector const &phiStates, storm::storage::BitVector const &psiStates, std::vector< ValueType > const &exitRates, ValueType timeBound)
static ::SupportsExponential std::vector< ValueType > computeCumulativeRewards(Environment const &env, storm::solver::SolveGoal< ValueType > &&goal, storm::storage::SparseMatrix< ValueType > const &rateMatrix, std::vector< ValueType > const &exitRateVector, RewardModelType const &rewardModel, ValueType timeBound)
static std::vector< ValueType > computeNextProbabilities(Environment const &env, storm::storage::SparseMatrix< ValueType > const &rateMatrix, std::vector< ValueType > const &exitRateVector, storm::storage::BitVector const &nextStates)
static std::vector< ValueType > computeTotalRewards(Environment const &env, storm::solver::SolveGoal< ValueType > &&goal, storm::storage::SparseMatrix< ValueType > const &rateMatrix, storm::storage::SparseMatrix< ValueType > const &backwardTransitions, std::vector< ValueType > const &exitRateVector, RewardModelType const &rewardModel, bool qualitative)
Helper class for model checking queries that depend on the long run behavior of the (nondeterministic...
std::vector< ValueType > computeLongRunAverageStateDistribution(Environment const &env)
Computes the long run average state distribution, i.e., a vector that assigns for each state s the av...
Helper class for computing for each state the expected number of times to visit that state assuming a...
std::vector< ValueType > computeExpectedVisitingTimes(Environment const &env, storm::storage::BitVector const &initialStates)
Computes for each state the expected number of times we are visiting that state assuming the given in...
static std::vector< ValueType > computeGloballyProbabilities(Environment const &env, storm::solver::SolveGoal< ValueType > &&goal, storm::storage::SparseMatrix< ValueType > const &transitionMatrix, storm::storage::SparseMatrix< ValueType > const &backwardTransitions, storm::storage::BitVector const &psiStates, bool qualitative)
std::vector< ValueType > computeLongRunAverageRewards(Environment const &env, storm::models::sparse::StandardRewardModel< ValueType > const &rewardModel)
Computes the long run average rewards, i.e., the average reward collected per time unit.
std::vector< ValueType > computeLongRunAverageProbabilities(Environment const &env, storm::storage::BitVector const &psiStates)
Computes the long run average probabilities, i.e., the fraction of the time we are in a psiState.
Helper class for LTL model checking.
std::vector< ValueType > computeLTLProbabilities(Environment const &env, storm::logic::PathFormula const &formula, CheckFormulaCallback const &formulaChecker)
Computes the LTL probabilities.
static std::map< std::string, storm::storage::BitVector > computeApSets(std::map< std::string, std::shared_ptr< storm::logic::Formula const > > const &extracted, CheckFormulaCallback const &formulaChecker)
Computes the states that are satisfying the AP.
std::vector< ValueType > computeDAProductProbabilities(Environment const &env, storm::automata::DeterministicAutomaton const &da, std::map< std::string, storm::storage::BitVector > &apSatSets)
Computes the (maximizing) probabilities for the constructed DA product.
#define STORM_LOG_WARN(message)
Definition logging.h:25
#define STORM_LOG_WARN_COND(cond, message)
Definition macros.h:38
#define STORM_LOG_THROW(cond, exception, message)
Definition macros.h:30
FragmentSpecification csrlstar()
void setInformationFromCheckTaskDeterministic(HelperType &helper, storm::modelchecker::CheckTask< FormulaType, typename ModelType::ValueType > const &checkTask, ModelType const &model)
Forwards relevant information stored in the given CheckTask to the given helper.
FilteredRewardModel< RewardModelType > createFilteredRewardModel(RewardModelType const &baseRewardModel, storm::logic::RewardAccumulation const &acc, bool isDiscreteTimeModel)