1#ifndef STORM_MODELS_SPARSE_MARKOVAUTOMATON_H_
2#define STORM_MODELS_SPARSE_MARKOVAUTOMATON_H_
15template<
class ValueType,
typename RewardModelType = StandardRewardModel<ValueType>>
32 std::unordered_map<std::string, RewardModelType>
const& rewardModels = std::unordered_map<std::string, RewardModelType>());
48 std::unordered_map<std::string, RewardModelType>&& rewardModels = std::unordered_map<std::string, RewardModelType>());
156 std::shared_ptr<storm::models::sparse::Ctmc<ValueType, RewardModelType>>
convertToCtmc()
const;
167 void turnRatesToProbabilities();
172 bool checkIsClosed()
const;
179 bool checkContainsZenoCycle()
const;
185 std::vector<ValueType> exitRates;
191 mutable boost::optional<bool> hasZenoCycle;
This class represents a Markov automaton.
void close()
Closes the Markov automaton.
bool containsZenoCycle() const
Retrieves whether the Markov automaton contains Zeno cycles.
bool isClosed() const
Retrieves whether the Markov automaton is closed.
std::shared_ptr< storm::models::sparse::Ctmc< ValueType, RewardModelType > > convertToCtmc() const
Convert the MA to a CTMC.
MarkovAutomaton & operator=(MarkovAutomaton< ValueType, RewardModelType > &&other)=default
bool isProbabilisticState(storm::storage::sparse::state_type state) const
Retrieves whether the given state is a probabilistic state.
MarkovAutomaton & operator=(MarkovAutomaton< ValueType, RewardModelType > const &other)=default
bool isMarkovianState(storm::storage::sparse::state_type state) const
Retrieves whether the given state is a Markovian state.
bool hasOnlyTrivialNondeterminism() const
bool isConvertibleToCtmc() const
Determines whether the Markov automaton can be converted to a CTMC without changing any measures.
virtual void printModelInformationToStream(std::ostream &out) const override
Prints information about the model to the specified stream.
std::vector< ValueType > const & getExitRates() const
Retrieves the vector representing the exit rates of the states.
storm::storage::BitVector const & getMarkovianStates() const
Retrieves the set of Markovian states of the model.
ValueType const & getExitRate(storm::storage::sparse::state_type state) const
Retrieves the exit rate of the given state.
ValueType getMaximalExitRate() const
Retrieves the maximal exit rate over all states of the model.
MarkovAutomaton(MarkovAutomaton< ValueType, RewardModelType > const &other)=default
MarkovAutomaton(MarkovAutomaton< ValueType, RewardModelType > &&other)=default
bool isHybridState(storm::storage::sparse::state_type state) const
Retrieves whether the given state is a hybrid state, i.e.
The base class of sparse nondeterministic models.
This class manages the labeling of the state space with a number of (atomic) labels.
A bit vector that is internally represented as a vector of 64-bit values.
A class that holds a possibly non-square matrix in the compressed row storage format.