11namespace modelchecker {
12namespace multiobjective {
14template<
typename ModelType>
16 : objectives(objectives), weightedPrecision(
storm::utility::zero<
ValueType>()) {
20template<
typename ModelType>
22 weightedPrecision = value;
25template<
typename ModelType>
27 return weightedPrecision;
30template<
typename ModelType>
32 STORM_LOG_THROW(
false, storm::exceptions::NotSupportedException,
"Scheduler generation is not supported in this setting.");
35template<
class SparseModelType>
38 ValueType result = storm::utility::zero<ValueType>();
39 for (
auto objIndex : objectiveFilter) {
40 boost::optional<ValueType>
const& objBound = (lower ==
storm::solver::minimize(this->objectives[objIndex].formula->getOptimalityType()))
41 ? this->objectives[objIndex].upperResultBound
42 : this->objectives[objIndex].lowerResultBound;
45 result -= objBound.get() * weightVector[objIndex];
47 result += objBound.get() * weightVector[objIndex];
57template<
typename ModelType>
58template<
typename VT,
typename std::enable_if<std::is_same<ModelType, storm::models::sparse::Mdp<VT>>::value,
int>::type>
62 return std::make_unique<StandardMdpPcaaWeightVectorChecker<ModelType>>(preprocessorResult);
65 return std::make_unique<RewardBoundedMdpPcaaWeightVectorChecker<ModelType>>(preprocessorResult);
69template<
typename ModelType>
70template<
typename VT,
typename std::enable_if<std::is_same<ModelType, storm::models::sparse::MarkovAutomaton<VT>>::value,
int>::type>
73 return std::make_unique<StandardMaPcaaWeightVectorChecker<ModelType>>(preprocessorResult);
88template std::unique_ptr<PcaaWeightVectorChecker<storm::models::sparse::Mdp<storm::RationalNumber>>>
91template std::unique_ptr<PcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<double>>>
94template std::unique_ptr<PcaaWeightVectorChecker<storm::models::sparse::MarkovAutomaton<storm::RationalNumber>>>
Helper Class that takes a weight vector and ...
ModelType::ValueType ValueType
PcaaWeightVectorChecker(std::vector< Objective< ValueType > > const &objectives)
boost::optional< ValueType > computeWeightedResultBound(bool lower, std::vector< ValueType > const &weightVector, storm::storage::BitVector const &objectiveFilter) const
Computes the weighted lower or upper bounds for the provided set of objectives.
void setWeightedPrecision(ValueType const &value)
Sets the precision of this weight vector checker.
ValueType const & getWeightedPrecision() const
Returns the precision of this weight vector checker.
virtual storm::storage::Scheduler< ValueType > computeScheduler() const
Retrieves a scheduler that induces the current values (if such a scheduler was generated).
static std::unique_ptr< PcaaWeightVectorChecker< ModelType > > create(preprocessing::SparseMultiObjectivePreprocessorResult< ModelType > const &preprocessorResult)
This class represents a Markov automaton.
This class represents a (discrete-time) Markov decision process.
A bit vector that is internally represented as a vector of 64-bit values.
This class defines which action is chosen in a particular state of a non-deterministic model.
#define STORM_LOG_DEBUG(message)
#define STORM_LOG_THROW(cond, exception, message)
bool constexpr minimize(OptimizationDirection d)
bool containsOnlyTrivialObjectives() const