44 ConstantType averageDecay = 0.9, ConstantType squaredAverageDecay = 0.999, uint_fast64_t miniBatchSize = 32, ConstantType terminationEpsilon = 1e-6,
47 startPoint = boost::none,
51 instantiationModelChecker(
52 std::make_unique<modelchecker::SparseDtmcInstantiationModelChecker<models::sparse::
Dtmc<FunctionType>, ConstantType>>(model)),
53 startPoint(startPoint),
54 miniBatchSize(miniBatchSize),
55 terminationEpsilon(terminationEpsilon),
56 constraintMethod(constraintMethod),
57 recordRun(recordRun) {
62 adam.learningRate = learningRate;
63 adam.averageDecay = averageDecay;
64 adam.averageDecay = averageDecay;
65 adam.squaredAverageDecay = squaredAverageDecay;
66 gradientDescentType = adam;
71 radam.learningRate = learningRate;
72 radam.averageDecay = averageDecay;
73 radam.squaredAverageDecay = squaredAverageDecay;
74 gradientDescentType = radam;
79 rmsProp.learningRate = learningRate;
80 rmsProp.averageDecay = averageDecay;
81 gradientDescentType = rmsProp;
87 plain.learningRate = learningRate;
88 gradientDescentType = plain;
99 momentum.learningRate = learningRate;
101 momentum.momentumTerm = averageDecay;
102 gradientDescentType = momentum;
106 useSignsOnly =
false;
113 nesterov.learningRate = learningRate;
115 nesterov.momentumTerm = averageDecay;
116 gradientDescentType = nesterov;
120 useSignsOnly =
false;
135 void setup(
Environment const& env, std::shared_ptr<storm::pars::FeasibilitySynthesisTask const>
const& task) {
138 this->synthesisTask = task;
139 STORM_LOG_ASSERT(task->getFormula().isProbabilityOperatorFormula() || task->getFormula().isRewardOperatorFormula(),
140 "Formula must be either a reward or a probability operator formula");
142 std::shared_ptr<storm::logic::Formula> formulaWithoutBounds = task->getFormula().clone();
143 formulaWithoutBounds->asOperatorFormula().removeBound();
144 this->currentFormulaNoBound = formulaWithoutBounds->asSharedPointer();
146 if (task->getFormula().isRewardOperatorFormula()) {
148 this->parameters.insert(rewardParameters.begin(), rewardParameters.end());
151 this->currentCheckTaskNoBound = std::make_unique<storm::modelchecker::CheckTask<storm::logic::Formula, FunctionType>>(*currentFormulaNoBound);
152 this->currentCheckTaskNoBoundConstantType =
153 std::make_unique<storm::modelchecker::CheckTask<storm::logic::Formula, ConstantType>>(*currentFormulaNoBound);
155 instantiationModelChecker->specifyFormula(*this->currentCheckTaskNoBound);
156 derivativeEvaluationHelper->specifyFormula(env, *this->currentCheckTaskNoBound);
184 void resetDynamicValues();
187 std::shared_ptr<storm::pars::FeasibilitySynthesisTask const> synthesisTask;
188 std::unique_ptr<modelchecker::CheckTask<storm::logic::Formula, FunctionType>> currentCheckTaskNoBound;
189 std::unique_ptr<modelchecker::CheckTask<storm::logic::Formula, ConstantType>> currentCheckTaskNoBoundConstantType;
190 std::shared_ptr<storm::logic::Formula const> currentFormulaNoBound;
193 std::set<typename utility::parametric::VariableType<FunctionType>::type> parameters;
194 const std::unique_ptr<storm::derivative::SparseDerivativeInstantiationModelChecker<FunctionType, ConstantType>> derivativeEvaluationHelper;
195 std::unique_ptr<storm::analysis::MonotonicityHelper<FunctionType, ConstantType>> monotonicityHelper;
196 const std::unique_ptr<modelchecker::SparseDtmcInstantiationModelChecker<models::sparse::Dtmc<FunctionType>, ConstantType>> instantiationModelChecker;
199 const uint_fast64_t miniBatchSize;
200 const ConstantType terminationEpsilon;
204 const bool recordRun;
205 std::vector<VisualizationPoint> walk;
209 ConstantType averageDecay;
210 ConstantType squaredAverageDecay;
211 ConstantType learningRate;
212 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverageSquared;
213 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverage;
216 ConstantType averageDecay;
217 ConstantType squaredAverageDecay;
218 ConstantType learningRate;
219 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverageSquared;
220 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverage;
223 ConstantType averageDecay;
224 ConstantType learningRate;
225 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> rootMeanSquare;
228 ConstantType learningRate;
231 ConstantType learningRate;
232 ConstantType momentumTerm;
233 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> pastStep;
236 ConstantType learningRate;
237 ConstantType momentumTerm;
238 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> pastStep;
240 typedef boost::variant<Adam, RAdam, RmsProp, Plain, Momentum, Nesterov> GradientDescentType;
241 GradientDescentType gradientDescentType;
245 ConstantType logarithmicBarrierTerm;
247 ConstantType stochasticGradientDescent(
253 ConstantType constantTypeSqrt(ConstantType input) {
254 if (std::is_same<ConstantType, double>::value) {
257 return carl::sqrt(input);
261 utility::Stopwatch stochasticWatch;
262 utility::Stopwatch batchWatch;
263 utility::Stopwatch startingPointCalculationWatch;
GradientDescentInstantiationSearcher(storm::models::sparse::Dtmc< FunctionType > const &model, GradientDescentMethod method=GradientDescentMethod::ADAM, ConstantType learningRate=0.1, ConstantType averageDecay=0.9, ConstantType squaredAverageDecay=0.999, uint_fast64_t miniBatchSize=32, ConstantType terminationEpsilon=1e-6, boost::optional< std::map< typename utility::parametric::VariableType< FunctionType >::type, typename utility::parametric::CoefficientType< FunctionType >::type > > startPoint=boost::none, GradientDescentConstraintMethod constraintMethod=GradientDescentConstraintMethod::PROJECT_WITH_GRADIENT, bool recordRun=false)
The GradientDescentInstantiationSearcher can find extrema and feasible instantiations in pMCs,...