44 ConstantType averageDecay = 0.9, ConstantType squaredAverageDecay = 0.999, uint_fast64_t miniBatchSize = 32, ConstantType terminationEpsilon = 1e-6,
47 startPoint = std::nullopt,
52 instantiationModelChecker(
53 std::make_unique<modelchecker::SparseDtmcInstantiationModelChecker<models::sparse::
Dtmc<FunctionType>, ConstantType>>(model)),
54 startPoint(startPoint),
55 miniBatchSize(miniBatchSize),
56 terminationEpsilon(terminationEpsilon),
57 constraintMethod(constraintMethod),
59 recordRun(recordRun) {
62 "Specifying a region is only supported if you are constraining by projection.");
67 adam.learningRate = learningRate;
68 adam.averageDecay = averageDecay;
69 adam.averageDecay = averageDecay;
70 adam.squaredAverageDecay = squaredAverageDecay;
71 gradientDescentType = adam;
76 radam.learningRate = learningRate;
77 radam.averageDecay = averageDecay;
78 radam.squaredAverageDecay = squaredAverageDecay;
79 gradientDescentType = radam;
84 rmsProp.learningRate = learningRate;
85 rmsProp.averageDecay = averageDecay;
86 gradientDescentType = rmsProp;
92 plain.learningRate = learningRate;
93 gradientDescentType = plain;
104 momentum.learningRate = learningRate;
106 momentum.momentumTerm = averageDecay;
107 gradientDescentType = momentum;
111 useSignsOnly =
false;
118 nesterov.learningRate = learningRate;
120 nesterov.momentumTerm = averageDecay;
121 gradientDescentType = nesterov;
125 useSignsOnly =
false;
140 void setup(
Environment const& env, std::shared_ptr<storm::pars::FeasibilitySynthesisTask const>
const& task) {
143 this->synthesisTask = task;
144 STORM_LOG_ASSERT(task->getFormula().isProbabilityOperatorFormula() || task->getFormula().isRewardOperatorFormula(),
145 "Formula must be either a reward or a probability operator formula");
147 std::shared_ptr<storm::logic::Formula> formulaWithoutBounds = task->getFormula().clone();
148 formulaWithoutBounds->asOperatorFormula().removeBound();
149 this->currentFormulaNoBound = formulaWithoutBounds->asSharedPointer();
151 if (task->getFormula().isRewardOperatorFormula()) {
153 this->parameters.insert(rewardParameters.begin(), rewardParameters.end());
156 this->currentCheckTaskNoBound = std::make_unique<storm::modelchecker::CheckTask<storm::logic::Formula, FunctionType>>(*currentFormulaNoBound);
157 this->currentCheckTaskNoBoundConstantType =
158 std::make_unique<storm::modelchecker::CheckTask<storm::logic::Formula, ConstantType>>(*currentFormulaNoBound);
160 instantiationModelChecker->specifyFormula(*this->currentCheckTaskNoBound);
161 derivativeEvaluationHelper->specifyFormula(env, *this->currentCheckTaskNoBound);
189 void resetDynamicValues();
192 std::shared_ptr<storm::pars::FeasibilitySynthesisTask const> synthesisTask;
193 std::unique_ptr<modelchecker::CheckTask<storm::logic::Formula, FunctionType>> currentCheckTaskNoBound;
194 std::unique_ptr<modelchecker::CheckTask<storm::logic::Formula, ConstantType>> currentCheckTaskNoBoundConstantType;
195 std::shared_ptr<storm::logic::Formula const> currentFormulaNoBound;
198 std::set<typename utility::parametric::VariableType<FunctionType>::type> parameters;
199 const std::unique_ptr<storm::derivative::SparseDerivativeInstantiationModelChecker<FunctionType, ConstantType>> derivativeEvaluationHelper;
200 std::unique_ptr<storm::analysis::MonotonicityHelper<FunctionType, ConstantType>> monotonicityHelper;
201 const std::unique_ptr<modelchecker::SparseDtmcInstantiationModelChecker<models::sparse::Dtmc<FunctionType>, ConstantType>> instantiationModelChecker;
204 const uint_fast64_t miniBatchSize;
205 const ConstantType terminationEpsilon;
207 const std::optional<storage::ParameterRegion<FunctionType>> region;
210 const bool recordRun;
211 std::vector<VisualizationPoint> walk;
215 ConstantType averageDecay;
216 ConstantType squaredAverageDecay;
217 ConstantType learningRate;
218 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverageSquared;
219 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverage;
222 ConstantType averageDecay;
223 ConstantType squaredAverageDecay;
224 ConstantType learningRate;
225 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverageSquared;
226 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverage;
229 ConstantType averageDecay;
230 ConstantType learningRate;
231 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> rootMeanSquare;
234 ConstantType learningRate;
237 ConstantType learningRate;
238 ConstantType momentumTerm;
239 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> pastStep;
242 ConstantType learningRate;
243 ConstantType momentumTerm;
244 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> pastStep;
246 typedef boost::variant<Adam, RAdam, RmsProp, Plain, Momentum, Nesterov> GradientDescentType;
247 GradientDescentType gradientDescentType;
251 ConstantType logarithmicBarrierTerm;
253 ConstantType stochasticGradientDescent(
259 ConstantType constantTypeSqrt(ConstantType input) {
260 if (std::is_same<ConstantType, double>::value) {
263 return carl::sqrt(input);
267 utility::Stopwatch stochasticWatch;
268 utility::Stopwatch batchWatch;
269 utility::Stopwatch startingPointCalculationWatch;
GradientDescentInstantiationSearcher(storm::models::sparse::Dtmc< FunctionType > const &model, GradientDescentMethod method=GradientDescentMethod::ADAM, ConstantType learningRate=0.1, ConstantType averageDecay=0.9, ConstantType squaredAverageDecay=0.999, uint_fast64_t miniBatchSize=32, ConstantType terminationEpsilon=1e-6, std::optional< std::map< typename utility::parametric::VariableType< FunctionType >::type, typename utility::parametric::CoefficientType< FunctionType >::type > > startPoint=std::nullopt, GradientDescentConstraintMethod constraintMethod=GradientDescentConstraintMethod::PROJECT_WITH_GRADIENT, std::optional< storage::ParameterRegion< FunctionType > > region=std::nullopt, bool recordRun=false)
The GradientDescentInstantiationSearcher can find extrema and feasible instantiations in pMCs,...