45 ConstantType averageDecay = 0.9, ConstantType squaredAverageDecay = 0.999, uint_fast64_t miniBatchSize = 32, ConstantType terminationEpsilon = 1e-6,
48 startPoint = std::nullopt,
53 instantiationModelChecker(
54 std::make_unique<modelchecker::SparseDtmcInstantiationModelChecker<models::sparse::
Dtmc<FunctionType>, ConstantType>>(model)),
55 startPoint(startPoint),
56 miniBatchSize(miniBatchSize),
57 terminationEpsilon(terminationEpsilon),
58 constraintMethod(constraintMethod),
60 recordRun(recordRun) {
63 "Specifying a region is only supported if you are constraining by projection.");
68 adam.learningRate = learningRate;
69 adam.averageDecay = averageDecay;
70 adam.averageDecay = averageDecay;
71 adam.squaredAverageDecay = squaredAverageDecay;
72 gradientDescentType = adam;
77 radam.learningRate = learningRate;
78 radam.averageDecay = averageDecay;
79 radam.squaredAverageDecay = squaredAverageDecay;
80 gradientDescentType = radam;
85 rmsProp.learningRate = learningRate;
86 rmsProp.averageDecay = averageDecay;
87 gradientDescentType = rmsProp;
93 plain.learningRate = learningRate;
94 gradientDescentType = plain;
105 momentum.learningRate = learningRate;
107 momentum.momentumTerm = averageDecay;
108 gradientDescentType = momentum;
112 useSignsOnly =
false;
119 nesterov.learningRate = learningRate;
121 nesterov.momentumTerm = averageDecay;
122 gradientDescentType = nesterov;
126 useSignsOnly =
false;
141 void setup(
Environment const& env, std::shared_ptr<storm::pars::FeasibilitySynthesisTask const>
const& task) {
144 this->synthesisTask = task;
145 STORM_LOG_ASSERT(task->getFormula().isProbabilityOperatorFormula() || task->getFormula().isRewardOperatorFormula(),
146 "Formula must be either a reward or a probability operator formula");
148 std::shared_ptr<storm::logic::Formula> formulaWithoutBounds = task->getFormula().clone();
149 formulaWithoutBounds->asOperatorFormula().removeBound();
150 this->currentFormulaNoBound = formulaWithoutBounds->asSharedPointer();
152 if (task->getFormula().isRewardOperatorFormula()) {
154 this->parameters.insert(rewardParameters.begin(), rewardParameters.end());
157 this->currentCheckTaskNoBound = std::make_unique<storm::modelchecker::CheckTask<storm::logic::Formula, FunctionType>>(*currentFormulaNoBound);
158 this->currentCheckTaskNoBoundConstantType =
159 std::make_unique<storm::modelchecker::CheckTask<storm::logic::Formula, ConstantType>>(*currentFormulaNoBound);
161 instantiationModelChecker->specifyFormula(*this->currentCheckTaskNoBound);
162 derivativeEvaluationHelper->specifyFormula(env, *this->currentCheckTaskNoBound);
190 void resetDynamicValues();
193 std::shared_ptr<storm::pars::FeasibilitySynthesisTask const> synthesisTask;
194 std::unique_ptr<modelchecker::CheckTask<storm::logic::Formula, FunctionType>> currentCheckTaskNoBound;
195 std::unique_ptr<modelchecker::CheckTask<storm::logic::Formula, ConstantType>> currentCheckTaskNoBoundConstantType;
196 std::shared_ptr<storm::logic::Formula const> currentFormulaNoBound;
199 std::set<typename utility::parametric::VariableType<FunctionType>::type> parameters;
200 const std::unique_ptr<storm::derivative::SparseDerivativeInstantiationModelChecker<FunctionType, ConstantType>> derivativeEvaluationHelper;
201 std::unique_ptr<storm::analysis::MonotonicityHelper<FunctionType, ConstantType>> monotonicityHelper;
202 const std::unique_ptr<modelchecker::SparseDtmcInstantiationModelChecker<models::sparse::Dtmc<FunctionType>, ConstantType>> instantiationModelChecker;
205 const uint_fast64_t miniBatchSize;
206 const ConstantType terminationEpsilon;
208 const std::optional<storage::ParameterRegion<FunctionType>> region;
211 const bool recordRun;
212 std::vector<VisualizationPoint> walk;
216 ConstantType averageDecay;
217 ConstantType squaredAverageDecay;
218 ConstantType learningRate;
219 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverageSquared;
220 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverage;
223 ConstantType averageDecay;
224 ConstantType squaredAverageDecay;
225 ConstantType learningRate;
226 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverageSquared;
227 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> decayingStepAverage;
230 ConstantType averageDecay;
231 ConstantType learningRate;
232 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> rootMeanSquare;
235 ConstantType learningRate;
238 ConstantType learningRate;
239 ConstantType momentumTerm;
240 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> pastStep;
243 ConstantType learningRate;
244 ConstantType momentumTerm;
245 std::map<typename utility::parametric::VariableType<FunctionType>::type, ConstantType> pastStep;
247 typedef boost::variant<Adam, RAdam, RmsProp, Plain, Momentum, Nesterov> GradientDescentType;
248 GradientDescentType gradientDescentType;
252 ConstantType logarithmicBarrierTerm;
254 ConstantType stochasticGradientDescent(
260 ConstantType constantTypeSqrt(ConstantType input) {
261 if (std::is_same<ConstantType, double>::value) {
264 return carl::sqrt(input);
268 utility::Stopwatch stochasticWatch;
269 utility::Stopwatch batchWatch;
270 utility::Stopwatch startingPointCalculationWatch;
GradientDescentInstantiationSearcher(storm::models::sparse::Dtmc< FunctionType > const &model, GradientDescentMethod method=GradientDescentMethod::ADAM, ConstantType learningRate=0.1, ConstantType averageDecay=0.9, ConstantType squaredAverageDecay=0.999, uint_fast64_t miniBatchSize=32, ConstantType terminationEpsilon=1e-6, std::optional< std::map< typename utility::parametric::VariableType< FunctionType >::type, typename utility::parametric::CoefficientType< FunctionType >::type > > startPoint=std::nullopt, GradientDescentConstraintMethod constraintMethod=GradientDescentConstraintMethod::PROJECT_WITH_GRADIENT, std::optional< storage::ParameterRegion< FunctionType > > region=std::nullopt, bool recordRun=false)
The GradientDescentInstantiationSearcher can find extrema and feasible instantiations in pMCs,...